arXiv:2312.15778v1 [math.OC] 25 Dec 2023

Age-of-Information in UAV-assisted Networks:

Decentralized Multi-Agent Optimization

Mouhamed Naby Ndiaye, El Houcine Bergou, and Hajar E1 Hammouti

College of Computing, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco,
emails: {naby.ndiaye,elhoucine.bergou,hajar.elhammouti}@um6p.ma

Abstract—Unmanned aerial vehicles (UAVs) are a highly promis-
ing technology with diverse applications in wireless networks.
One of their primary uses is the collection of time-sensitive data
from Internet of Things (IoT) devices. In UAV-assisted networks,
the Age-of-Information (Aol) serves as a fundamental metric for
quantifying data timeliness and freshness. In this work, we are
interested in a generalized Aol formulation, where each packet’s
age is weighted based on its generation time. Our objective is to
find the optimal UAVs’ trajectories and the subsets of selected
devices such that the weighted Aol is minimized. To address
this challenge, we formulate the problem as a Mixed-Integer
Nonlinear Programming (MINLP), incorporating time and quality
of service constraints. To efficiently tackle this complex problem
and minimize communication overhead among UAVs, we propose
a distributed approach. This approach enables drones to make
independent decisions based on locally acquired data. Specifically,
we reformulate our problem such that our objective function
is easily decomposed into individual rewards. The reformulated
problem is solved using a distributed implementation of Multi-
Agent Reinforcement Learning (MARL). Our empirical results
show that the proposed decentralized approach achieves results
that are nearly equivalent to a centralized implementation with a
notable reduction in communication overhead.

Index Terms—Actor-Critic, Age-of-Information, MARL, Policy
Gradient, PPO, UAV-assisted Network.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), also known as drones, are
used in wireless communications for a variety of applications
such as collecting data and providing on-demand connectivity.
However, their deployment in a multi-agent environment poses
several challenges such as resource allocation, trajectory design,
and cooperation between drones [1], [2]. In this paper, we
focus on the use of UAVs to periodically collect time-sensitive
data from IoT devices and transmit it to a server for analysis
and decision-making. To measure the freshness of the collected
data, we are interested in the concept of Age-of-Information
(Aol) [3], [4] which quantifies the time elapsed since the last
data update was collected. Our main objective is to minimize
the weighted Aol of the network over a period of time. Since
UAVs operate in a common environment, we need to carefully
design their behaviors and interactions to achieve the common
goal of minimizing the weighted Aol.

A. Related Work

Optimizing a common objective in multi-UAV networks is
a challenging task for two main reasons. First, it requires
finely tuned UAVs actions while respecting resource and energy
constraints. Second, it entails the complex coordination between
UAVs which should involve a minimum communication over-
head. To address these challenges, Multi-Agent Reinforcement
Learning (MARL), an extension of Reinforcement Learning
(RL) to the multi-agent setting, has been proposed [5]-[8].
In [6], authors study the problem of dynamic resource allocation
in multi-UAV networks. The studied problem is formulated
as a stochastic game. To solve the optimization problem, the
authors propose an RL-based approach where all agents share
a common structure based on Q-learning. Similarly, in [7], the
authors study the deployment of a clustered multi-drone system
to provide computational task offloading to IoT devices. They
formulate their problem with the goal of minimizing the long-
term computational cost in terms of delay and energy. Then,
they propose a centralized method based on multi-agent deep
reinforcement learning to minimize the overall computational
cost of the network. In [8], the authors propose a cooperative
multi-agent algorithm with an actor-critic architecture to solve
the problem of latency. The proposed critic architecture is shared
between the agents.

In the previously cited works, MARL is implemented using
a Centralized Training and Decentralized Execution (CTDE)
strategy. In CTDE, the training and execution phases of the
multi-agent system are handled differently. First, a centralized
entity uses a global knowledge of the system to learn a co-
ordinated policy for agents. Second, after the training, each
agent operates independently and makes decisions based on its
local observations. While CTDE achieves promising results, it
requires the exchange of a large amount of information with
the central entity, which may not be feasible in scenarios with
limited communication bandwidth and latency. CTDE also does
not scale well and becomes less efficient as the number of agents
in the system increases.

On the other hand, a handful of works applying Decentralized
Training and Decentralized Execution (DTDE) to MARL can
be found [9]-[11]. In fact, in DTDE, both the training and
execution phases are conducted in a decentralized manner.



Each agent learns its policy independently and makes decisions
without direct access to the global state or actions of other
agents. For example, in [9], a decentralized trajectory plan-
ning is proposed for collision and obstacle avoidance in UAV
networks. The trajectory design of UAVs is also investigated
in [10], where energy-constrained drones serve dynamic users.
The authors propose a distributed Value Decomposition-based
Reinforcement Learning (VDRL) solution to find the trajectories
of UAVs which maximize the fraction of served users. Similarly,
a value decomposition RL is used in [11] to address the problem
of data pre-storing and routing in resource-constrained cube
satellite networks.

None of the previously cited works studied the problem of
Aol minimization. Furthermore, these works employ classi-
cal off-policy and on-policy algorithms to train agents which
sometimes turn out to be unstable and data inefficient [12].
To overcome this shortcoming, Proximal Policy Optimization
(PPO) was introduced as an on-policy algorithm that benefits
from both stability and data efficiency [12], [13]. In fact, PPO
uses a special objective function that allows the policy to change
rapidly, while still ensuring that it remains close to the old
policy. This results in a more stable and data-efficient algorithm,
which has been shown to be competitive with some of the
widely used on- and off-policy algorithms.

The closest research to this work is our previously published
paper [14], wherein we introduced a centralized Multi-Agent
PPO (MAPPO) approach for minimizing the Aol. In contrast
to our earlier work, this paper presents a decentralized im-
plementation of MAPPO while relying on an approximated
formulation of the studied optimization problem. Moreover, it
relies on a more general formulation of the Aol where a weight
is attributed to the age of each packet according to its generation
time. Furthermore, a comparative analysis between the proposed
decentralized approach and the centralized approach in [14] is
conducted.

B. Contribution

Our work focuses on a multi-UAV network in which a set
of drones is deployed to collect time-sensitive data updates
from IoT devices. Our goal is to optimally design the UAVs’
trajectories and subsets of visited [oT devices, with the objective
of minimizing the weighted Aol. Our contributions can be
summarized as follows.

o We provide a general formulation of Aol where weight
is attributed to the age of each packet according to
its generation time. Each packet is assigned a weight,
allowing for a greater emphasis on recently generated
packets without ignoring previously generated ones. The
problem is then formulated as a Mixed-Integer Nonlinear
Programming (MINLP), incorporating time and quality of
service constraints.

« To solve the studied problem, we propose an approximation
of the formulated problem that enables the decomposition

of the reward, thus allowing the UAVs to learn optimal
policies independently.

o« We propose a decentralized approach to training agents
based on DTDE and PPO. Our approach aims to address
the challenge of learning optimal policies for UAVs without
the need for sharing information such as state, action, and
reward data among the agents.

« Finally, based on our simulation results, we show that the
proposed decentralized approach achieves results that are
nearly comparable to a centralized implementation, while
significantly reducing communication overhead.

C. Organization

The remainder of the paper is organized as follows. In
Section II, we describe the studied system model and introduce
the Aol metric. The mathematical formulation of the problem
is given in Section III. In Section IV, we describe in detail
the proposed distributed MARL approach. Next, in Section V,
we assess the performance of the proposed approach. Finally,
concluding remarks are provided in Section VL.

II. SYSTEM MODEL

Consider a set of I IoT devices, denoted by Z, which generate
data updates periodically over a time span 7. We assume that
T is partitioned into equal intervals of duration 7. Within each
interval, device ¢ generates new data at a period k;7, where k;
can take values from the set {1,2,..., K}, and K = % We also
assume that the data generated by each device is accumulated
in a buffer until its collection by a UAV.

A. Age-of-Information Metric

To capture the heterogeneous generation frequencies of IoT
devices and accurately reflect the freshness of the collected in-
formation, we introduce Aol metric. The Aol quantifies the time
elapsed between data generation and data collection for each IoT
device. Let A7'[t] represent the Aol of data at time interval ¢
generated by device 4 during its n™ period of generation, which
corresponds to the nk® time interval. The Aol value A?[t] at
time interval ¢ > 0 can be calculated recursively using the
following expression

t
n APt =11 4+7 if D D aut] =0 & nk; <t
Aj [ﬂ = I=nk; ueld
0

otherwise,
where U represents the set of UAVs, and «y,[t] denotes a
binary variable with «,[t] = 1 if UAV w collects data from
device ¢ during time interval ¢, and «a;,[t] = 0 otherwise,
and A?[0] = 0. The Aol metric is formulated as follows:
when data updates from device ¢ are not collected during time

interval ¢ (i.e., > auu[t] = 0), the Aol is increased by 7.
uel
Conversely, when updates are collected (i.e., > ajy[t] = 1)

ueU
or have not been generated yet (i.e., nk; > t), the Aol is set to



zero [15], [16]. Unlike existing works which focus on the Aol
of the most recently generated packet [17], [18], we adopt a
more general formulation by considering all the packets in the
buffer. In fact, in some applications, historical data may have
an important impact on the process of prediction and decision-
making, necessitating the evaluation of both older and recent
data. To this end, we introduce a weight factor denoted as
w™[t], which corresponds to the weight during time interval
t of a packet generated at period n. In our work, we assume
that the weight factor increases as the generation time of the
packet increases. This allows for a higher emphasis on the
recently generated packets while still considering previously
generated ones. Consequently, a packet generated at time n
holds less importance than another one generated at time n+ 1,
ie., w"[t] < w"Tlt]. A typical function of w"[t] is given by

w"[t] = ~'~™, where v € [0, 1].
Finally, the weighted Aol of all the data generated by
IoT device ¢ during the considered time, f;(cx;), is given by
K L]

filay) = ; z—:o w™[t]A[t], with a; = (yt]) weld a
UxK mgTri)?._

B. Communication Model

Each IoT device communicates with a UAV through the air-
to-ground channel. In our model, we adopt a block Rician-
fading approach, where the propagation channels between
any device-UAV pair remain constant during a time interval
of length equal to or less than 7. As a result, the air-to-
ground channel between device ¢ and UAV w is hg[t] =

;. i) ( (I%lﬁ}uos [t] + ,/ﬁ_lfNLosm [t]) where ® is the Ri-
cian factor, £~°5[t] is the line-of-sight (LoS) component with
|€koS[t]] = 1, and ENM°S[t] the random non-line-of-sight
(NLoS) component, which follows a Rayleigh distribution with
mean zero and variance one. Finally, d;,[t] is the distance
between the pair device-UAV during time interval ¢ that is given
by dualt] = \/@alt] — 20)2 + (yalt] — %:)? + (H.)%. where
(xu[t], yult], Hy) and (z;,y;,0) are the 3D positions of UAV
u and device ¢ respectively. To avoid collisions, each UAV u
flies at a constant and different altitude H,,.

We assume that devices use orthogonal frequency division
multiple access (OFDMA) for their transmissions. Accordingly,
the signal-to-noise ratio (SNR) of IoT device ¢ with respect to
UAV u is given by [y, [t] = P;[t] |ha[t]|” /o2, where o2 is the
variance of an additive white Gaussian noise and FP;[t] is the
transmit power of device ¢ during time interval ¢. Therefore,
the rate of IoT device ¢ with respect to UAV u during time slot
t can be written as R;,[t] = Byy[t]logs (1 + Ty t]), where
B, [t] is the allocated bandwidth between device ¢ and UAV u
during time slot .

During its flight, a UAV makes stops to collect data from
subsets of IoT devices. To ensure efficient and rapid data
transmission between device ¢ and UAV wu, the data rate denoted
as R;, for the device-UAV pair should exceed a predefined

threshold value R™". This threshold, R™", is set high enough
to enable nearly instantaneous transmission of all accumulated
data updates. Consequently, the data collection time is consid-
ered negligible compared to the flight time. For the purpose
of our analysis, we assume that UAVs maintain a constant
flight speed denoted as V. Hence, the total flight time for
UAV u, denoted by (,, can be expressed as (,@.,vy,) =

K /(@ulthe[8) > Hyu [t ]y [t])?
t=1 i :
Our objective is to optimize the trajectories of UAVs and the

subsets of visited IoT devices in order to minimize the Aol
across all devices subject to some quality of service constraints.
To achieve this goal, we will first present the mathematical
formulation of the problem. Subsequently, we will propose an
efficient distributed approach to solve this optimization problem.

III. PROBLEM FORMULATION

The main aim of our paper is to minimize the Aol across all
devices throughout the time span 7'. To achieve this objective,
we focus on optimizing the stopping locations of UAVs over
time and the selection of devices for data collection. The
optimization problem is formulated as follows.

min (o), la
st. Rult] > aiu[t]R™", Yu € U, Vi € T, (1b)

vVt e {0,...,K — 1},

> awlt] <1, VieLVte{0,...,K —1}, (lo)
ueld

Cu(@Tu,y,) < G, VEU, (1d)
0 < ayft] <™, Vuel,t € {0,K -1}, (le)
0 < yult] <y™™, Yuel,te€{0,K — 1}, (1)

ailt) €{0,1}, Vie Zue U,t € {0, K — 1} (1g)

Constraint (1b) ensures that the data rate between each UAV
and its associated IoT device remains above the predefined
threshold R™". Constraint (1c) ensures that each IoT device
transmits data to only one UAV at a time. Constraint (1d)
guarantees that each UAV’s flight time, (,, does not exceed its
maximum allowed flight time, (;}**, which is determined by its
energy budget. Constraints (le) and (1f) restrict the movement
of UAVs within the studied area. Constraint (1g) reflects the
binary nature of the association variables.

The studied optimization problem involves a combination of
binary and continuous variables, as well as nonlinear objective
function and constraints. As a result, it falls under the category
of Mixed-Integer-Nonlinear-Programming (MINLP) problems,
which are known to be challenging to solve. Traditional MINLP
optimization algorithms such as Branch-and-Bound are not
appropriate to solve such problems due to their exponential
convergence time and the need for global knowledge of the
environment and its dynamics. Additionally, classical ML algo-
rithms, including standard RL, struggle to scale with the large



dimension of the variable set and are not well-suited for multi-
agent environments. To address these challenges, we leverage
the MAPPO framework to efficiently solve the optimization
problem and find optimal trajectories and device subsets for
data collection by the UAVs.

IV. A DECENTRALIZED MAPPO IMPLEMENTATION FOR
Ao0I MINIMIZATION

The optimization of trajectories and subsets of served IoT
devices in a multi-UAV system is a complex task due to the
interdependence of UAV policies and their shared objective of
minimizing the global Aol. Each UAV’s decision to visit and
collect data from a device depends on whether other UAVs have
previously collected data from that device or not. However,
achieving a fully synchronized system where UAVs possess
complete global knowledge of the environment, including the
positions and historical actions of other UAVs, is challenging
in practical scenarios.

To cope with the challenges of optimizing a common objec-
tive in a multi-UAV system, we employ the MAPPO approach,
which extends the PPO algorithm. The MAPPO framework
adopts a multi-agent learning perspective, allowing individual
UAVs to make decisions independently. The MAPPO approach
utilizes an actor-critic architecture. The actor is a neural network
that approximates the agent’s policy and is responsible for
decision-making, while the critic is another neural network that
evaluates these decisions by estimating a value function.

To efficiently train the MAPPO agents, we utilize the DTDE
scheme. Unlike CTDE where all the agents policies are fed
into one centralized critic network, the DTDE setup assumes a
critic architecture for each agent. Specifically, each critic learns
an individual value function that considers the local actions of
its respective agent. On the other hand, the actor network is
employed by each UAV to calculate its policy, relying solely on
its own local observations.

To achieve MARL based on the DTDE scheme, the objective
function needs to be decomposed so that each agent can
compute its own reward. However, directly decomposing the
original objective in (la) is challenging due to the need for
information sharing between agents about which IoT devices
have been visited previously and their data have been collected.

To overcome this limitation, we design a new objective
function in (2a) that can easily be decomposed into individual
rewards. The proposed function involves the number of served
devices at time step ¢ which is weighted by their respective Aol
at the previous time step, ¢ — 1. This modification ensures that
agents take into account the cumulated age of data when making
decisions, leading to a more effective reduction in the overall
Aol.

Consequently, an alternative optimization problem, which can
be seen as an approximation of the original problem (1), is
formulated as follows

ﬁ
Zlx
-

3 Sl

max w" [t] ATt — 1], (2a)
GTY S e n=0
s.t. (1d), (1¢), (1d), (1e), (1f) and (1g). (2b)

It can be seen from this formulation that the new objective
function is composed of the sum of individual rewards of each
UAY, where the target of each UAV is to maximize the number
of visited devices weighted by their Aol in the previous time
step. Specifically, each UAV at time ¢, will seek to visit devices
with the highest Aol at time ¢—1, in order to reset their Aol to 0
at time ¢. This modified problem serves as a basis for developing
an efficient and distributed MARL approach using the MAPPO
framework.

The proposed decentralized MAPPO algorithm, referred to as
MAPPO-AoI-Dec, involves the following elements.

o Agents: the set of UAVs.

o Actions: At each time step, two decisions need to be
made by each UAV. The first decision involves moving
along either the = or y axis, with actions up, down, right,
left, or staying in the same place. The second decision
involves selecting a subset of devices from which data is
collected. Hence, an action of a UAV wu at time ¢ can be
represented as a tuple a,[t] € {0,1,2,3,4} x {0,1}{. In
this representation, the first component, which can take
values from 0, 1, 2, 3, 4, indicates whether the UAV stays at
the same position (0) or moves in a specific direction: up
(1), down (2), right (3), or left (4). The second component
is a binary vector of length I that specifies the devices
selected for data collection.

« States: The state of UAV w at time step ¢ is represented
by its location, denoted as s, [t]. To encompass all possible
states, the studied area is divided into a 2D grid with a
granularity of 4, denoted as Gs. Therefore, the set of states
for a UAV is given by S = Gs. The global state vector of all
UAVs at time step ¢ is denoted as s[t] = (s1[t],. .., su[t]).

o Rewards: The reward of a UAV w at time ¢, r[t], is
given by the sum of its visited devices weighted by
their Aol at the previous time interval, i.e., r,[t] =

L

Z:Iam [t] Zo wn (| APt — 1].
1€ n=
o Policy function: We define the policy function

7o, (@y,s,) as the actor network that takes as input
the local state s, of UAV w and outputs a probability
distribution over its possible actions a,. The policy
function is parameterized by the vector 6, and is used
to generate the UAV’s strategy based on its own local
state. The UAV then selects an action according to this
probability distribution.

« Value function: The value function Vj(s,,) is represented
by the critic network and is parameterized by the vector
¢,,- The critic network is trained to estimate the expected



future reward that can be achieved by a UAV u starting
from a given state s,. The critic network takes as input
the state s,, and provides a scalar output representing the
estimated reward that the UAV can expect to receive in the
future if it follows the policy mg,. The goal of the critic
network is to find the optimal strategy that maximizes the
expected reward of UAV w.

The MAPPO-Aol-Dec algorithm is structured similarly to the
PPO algorithm used in single-agent settings [12]. In this ap-
proach, each UAV’s actor network updates its policy parameters
using the PPO algorithm based on its own local state and
reward information. At each training step ¢, when presented with
its current state s,[t], the actor network computes an action
a,[t] according to its policy me, (@.[t], su[t]). This selected
action is then executed, leading to a new state s, [t + 1] and a
corresponding local reward 7, [t].

During the training process, the MAPPO-Aol-Dec algorithm
individually trains critic networks to estimate the value function
for each UAV agent u. Each critic network takes only the local
state s,, of its corresponding agent as input and outputs the
estimated value Vg, (). The training procedure of MAPPO-
Aol-Dec involves alternating between updating the actor and
critic networks until convergence, as illustrated in Fig. 1.
Each UAV trains its actor network using the PPO approach,
minimizing a loss function based on its local state s,,[t] at each
training step t. The actor network samples an action a,,[t] from
its policy mg(ay[t], su[t]), leading to a new state s,[t + 1].
Subsequently, the local state vector of each UAV is fed into
each of their respective critic networks, which are also trained
using the PPO approach. Moreover, before moving to the next
state and observing the reward, the MAPPO-Aol-Dec algorithm
ensures that the constraints of the optimization problem are
satisfied.

V. SIMULATION RESULTS

Parameter | Value Parameter | Value

I 25 U 3

Tmaz 1000m Ymazx 1000m
H, [80, 100]m Roin 150 Kbit/s
T 3ms k; [1,5]

Bi ., 1.5,2] GHz || o2 —120dBm
P; 0, 1] mW T 5007

TABLE I: Simulation setup

We evaluate the performance of our proposed approach
through simulations with a 1000m x 1000m area, 25 IoT
devices randomly deployed and 3 UAVs for data collection. We
assume that the UAVs fly at altitudes 80m, 90m and 100m, and
maintain a constant speed of 15m/s. The mission time is set to
e = 5007, where 7 = 3ms. The data generation period of
IoT devices varies randomly between 17 and 57. Each device
is assigned a fixed bandwidth randomly selected from the range
[1.5,2] GHz and a constant power between [0,1] mWatt. To
meet the quality of service constraint, a minimum rate of 150

Kbit/s is ensured. The simulation parameters are summarized in
Table 1. Furthermore, we set w"[t] = v'~" where v = 0.8.

In our simulations, we compare two approaches for training
MARL agents in the context of UAV-assisted data collection.

o MAPPO-AoI-Dec is the proposed decentralized approach
which solves problem (2a) with a decentralized implemen-
tation of MAPPO.

o MAPPO-Aol-Centr-Objl is a centralized MAPPO similar
to the one in [14] that solves the original optimization
problem.

e MAPPO-Aol-Centr-Obj2 is a centralized MAPPO as
in [14] that solves the approximate problem (2a) using a
centralized training.

In Fig. 2, we can observe the total Aol of the system through-
out the training episodes. It can be seen from the plot that all
three studied schemes achieve nearly the same Aol at the end
of the training. However, as expected, the MAPPO-Aol-Centr-
Objl scheme demonstrates slightly better performance due to its
optimization of the exact target function depicted in the figure.
It is followed by MAPPO-Aol-Centr-Obj2 which also benefits
from the global knowledge of the network, contributing to its
improved results. Finally, MAPPO-Aol-Dec achieves promising
results although the agents, for this scheme, do not share any
information with each other.

In Fig. 3, we plot the total number of communications
between IoT devices and UAVs during their mission. This
number represents the total number of times an IoT device sends
its collected data to a UAV. It can be noticed that the number of
data transmissions reaches its highest values for the centralized
schemes, aligning with the results shown in Fig. 2.

In Fig. 4, we plot the number of IoT devices visited at least
once. As depicted, all devices have had their data collected at
least once for the three schemes. This is expected since leaving
a device unvisited would significantly increase the total Aol,
making it essential to collect data from all devices at least once.

Fig. 5 illustrates the relationship between the number of
UAV-IoT communications and the data generation period in the
proposed scheme. The figure highlights that IoT devices with
shorter data generation periods experience a greater frequency of
interactions with UAVs, making them more frequently visited.
Finally, the trajectories of all UAVs are depicted in Fig. 6.
Commencing their flight from a designated point such as CDS,
these UAVs navigate to visit all IoT devices to maximize the
freshness of the collected data.

VI. CONCLUSION

Our paper focused on the deployment of UAVs for time-
sensitive data collection and quantifying data freshness using
the Aol metric. We formulated the problem as a MINLP
and proposed a MAPPO approach to efficiently solve it. To
ensure scalability and effectiveness, we developed a decen-
tralized method for training MARL agents and compared it
to a centralized approach. Simulation results showed that the
decentralized approach achieved promising results.
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